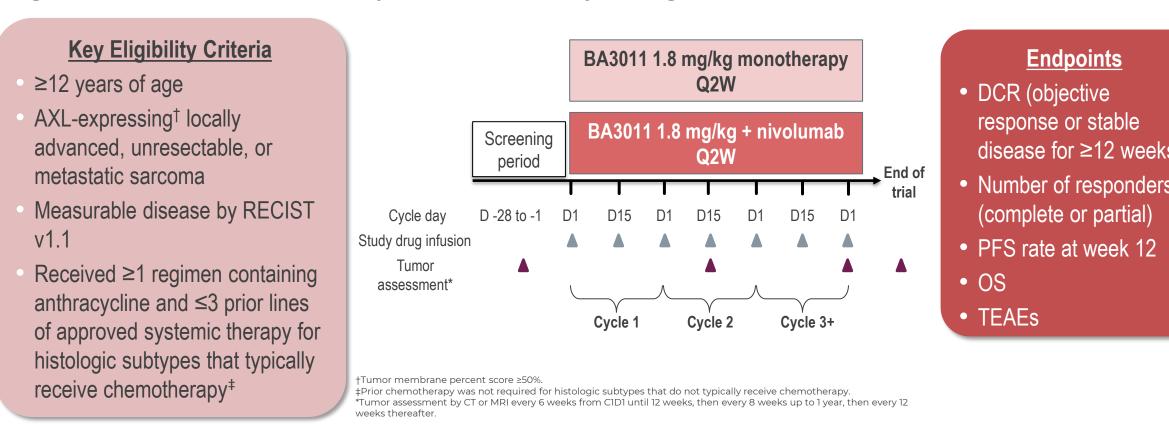
Mihaela Druta, MD, Seth M. Pollack, MD, Anthony P. Conley, MD, Anthony P. Conley, MD, Anthony P. Conley, MD, Anna W. Chalmers, MD, A Setty, MD,¹⁷ Leo Mascarenhas, MD, MS,¹⁸ Gregory M. Cote, MD,¹⁹ Kyechin Chen, PharmD,²⁰ Judith Llorin-Sangalang, MD,²⁰ Kartik Aysola, MD,²⁰ and Breelyn Wilky, MD,²¹

¹Moffitt Cancer Center, Tampa, FL, USA, ²Northwestern University, Chicago, IL, USA, ³The University, Chicago, IL, USA, ⁴Memorial Sloan-Kettering Cancer Center, Houston, TX, USA, ⁴Memorial Sloan-Kettering Cancer Center, New York, NY, USA, ⁵Taipei Veterans General Hospital and the Medical College of Wisconsin, Milwaukee, WI, USA, ⁵Taipei Veterans General Hospital and the Medical College of Wisconsin, Milwaukee, WI, USA, ⁵Taipei Veterans General Hospital and the Medical College of Wisconsin, Milwaukee, WI, USA, ⁵Taipei Veterans General Hospital and the Medical College of Wisconsin, Milwaukee, WI, USA, ⁵Taipei Veterans General Hospital and the Medical College of Wisconsin, Milwaukee, WI, USA, ⁵Taipei Veterans General Hospital and the Medical College of Wisconsin, Milwaukee, WI, USA, ⁵Taipei Veterans General Hospital and the Medical College of Wisconsin, Milwaukee, WI, USA, ⁵Taipei Veterans General Hospital and the Medical College of Wisconsin, Milwaukee, WI, USA, ⁵Taipei Veterans General Hospital and the Medical College of Wisconsin, Milwaukee, WI, USA, ⁵Taipei Veterans General Hospital and the Medical College of Wisconsin, Milwaukee, WI, USA, ⁵Taipei Veterans General Hospital and the Medical College of Wisconsin, Milwaukee, WI, USA, ⁵Taipei Veterans General Hospital and the Medical College of Wisconsin, Milwaukee, WI, USA, ⁵Taipei Veterans General Hospital and the Medical College of Wisconsin, Milwaukee, WI, USA, ⁵Taipei Veterans General Hospital And Theology General Hospital USA, 8Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA, 9Fred Hutchinson Cancer Center/University of Washington, Seattle, WA, USA, 10Norton Cancer Institute, Louisville, KY, USA, 14Children's National Hospital, San Francisco, San Francisco, CA, USA, 14Children's National Hospital, San Fr Washington, DC, USA, 15The Chinese University of Hong Kong, China, 16Dana-Farber Cancer Institute, Boston, MA, USA, 19Massachusetts General Hospital, The Ohio State University of Colorado Cancer Center, Aurora, CO, USA, 19Massachusetts General Hospital, Boston, MA, USA, 19Massachusetts General Hospital, Boston,

Background

AXL, a cell-surface receptor tyrosine kinase, is highly expressed in a wide variety of solid tumors including several STS subtypes


- Despite advances in therapy, sarcomas remain a significant unmet need with median OS among patients with treatment-refractory soft tissue sarcomas (STS) treated with either trabectedin, pazopanib, dacarbazine or eribulin previously reported to range from 11.5 to 13.6 months (Figure 4)¹⁻⁴
- AXL expression has been shown to drive increased metastasis, resistance to chemotherapy, and poor outcomes⁵
- Previous clinical experience with Mec-V demonstrated antitumor activity regardless of AXL expression by tumor as assessed by immunohistochemistry

Mecbotamab Vedotin (Mec-V) is conditionally active biologic (CAB) anti-AXL ADC

- CABs:
- Are not masked or caged prodrugs and do not require enzymatic cleavage for activation
- Conditionally and reversibly bind to AXL under the low-pH conditions (pH 5.3–6.7) of the TME, sparing normal tissues
- Reduce off-tumor AEs without increasing immunogenicity, avoid tissue-mediated drug disposition, and improve PK⁴
- Mec-V (Conditionally Active Biologic (CAB)-AXL-ADC) is designed to reduce off-tumor toxicity and improve pharmacokinetics by conditionally binding to AXL under low-pH conditions (pH 5.3-6.7) of the tumor microenvironment^{6,7}
- As previously reported, every-other-week delivery of Mec-V attained disease control in 43% of patients with treatment-refractory sarcomas
- Partial responses were observed among patients with osteosarcoma and undifferentiated pleomorphic sarcoma (UPS; reported previously)

Trial Design

Figure 1. Phase 2, Part 1 open-label study design

Results

Patient characteristics and disposition

- As of March 25, 2025 data cut, 79 pts with soft tissue sarcoma received Mec-V 1.8mg/kg Q2W (monotherapy) (n=54) or 1.8 mg/kg Q2W + nivolumab (combination) (n=25); (Table 1)
- Pts had previously received a median of 2 prior lines of therapy (range 0-10)
- Pts received a mean of 15 weeks of Mec-V (range 2-63 weeks)
- Current efficacy analysis characterizes overall survival among subset of pts with leiomyosarcoma, liposarcoma, and undifferentiated pleomorphic sarcomas (N=44)

Table 1 Patient demographics

lable 1. Patient demographics					
Monotherapy (N=54)	Combination (N=25)	Total (N=79)			
57 (23-78)	55 (25-80)	56 (23-80)			
23 (43)	12 (48)	35 (44)			
31 (57)	13 (52)	44 (56)			
12 (22)	4 (16)	16 (20)			
17 (32)	12 (48)	29 (37)			
24 (44)	9 (36)	33 (42)			
1 (2)	0	1 (1)			
19 (35)	8 (32)	27 (34)			
6 (11)	2 (8)	8 (10)			
8 (15)	1 (4)	9 (11)			
21 (39)	14 (56)	35 (44)			
	(N=54) 57 (23-78) 23 (43) 31 (57) 12 (22) 17 (32) 24 (44) 1 (2) 19 (35) 6 (11) 8 (15)	(N=54) (N=25) 57 (23-78) 55 (25-80) 23 (43) 12 (48) 31 (57) 13 (52) 12 (22) 4 (16) 17 (32) 12 (48) 24 (44) 9 (36) 1 (2) 0 19 (35) 8 (32) 6 (11) 2 (8) 8 (15) 1 (4)			

Safety

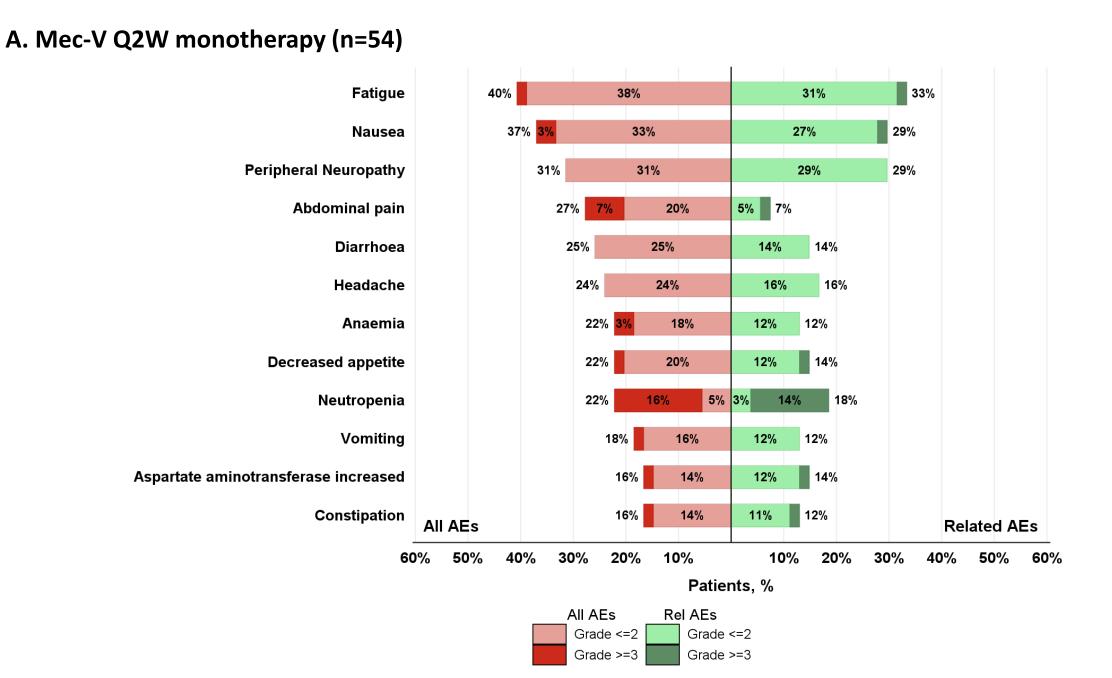
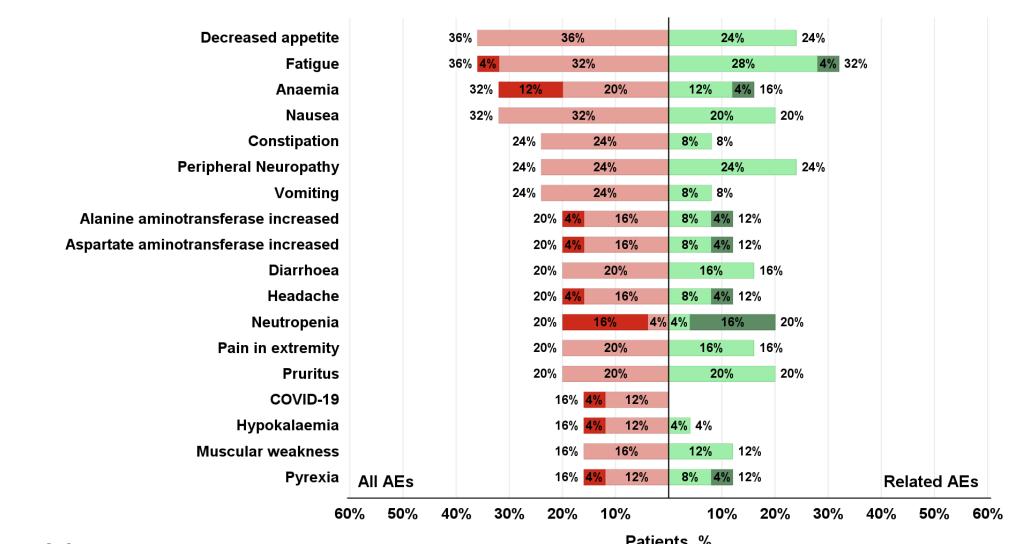

- Mec-V was generally well-tolerated with a manageable safety profile
- Most TEAEs were low grade and reversible; related G3 or G4 TEAE of special interest were neutropenia (21%), hepatic transaminase elevations (16%), and hyperglycemia (3%)
- No ocular AE or interstitial lung disease was observed; no treatment-related death was observed
- Treatment-related discontinuations (n=8): [G2 peripheral neuropathy (n=5), G2 ileus (n=1), G1 fatigue, G3 pancreatitis (n=1)]

Table 2. Summary of AEs


	Monotherapy (N=54)	Combination (N=25)	Total (N=79)		
Any Adverse Events, (n, %)	52 (96)	23 (92)	75 (95)		
Related Adverse Events, (n, %)	44 (82)	20 (80)	64 (81)		
G3 AE	15 (28)	8 (32)	23 (29)		
G4 AE	2 (4)	2 (8)	4 (5)		
Any related serious AE, (n, %)	4 (7)	5 (20)	9 (11)		
Related AEs leading to death, (n, %)	0	0	0		
Related AEs leading to treatment discontinuation, (n, %)	7 (13)	1 (4)	8 (10)		
Relatedness was assessed by the investigator. Missing responses were counted as related.					

Mec-V Q2W monotherapy and combination regimens were both reasonably well-tolerated

Figure 2. Most frequent TEAE >15%

B. Mec-V Q2W in combination with anti-PD-1 (n=25)

Abbreviations

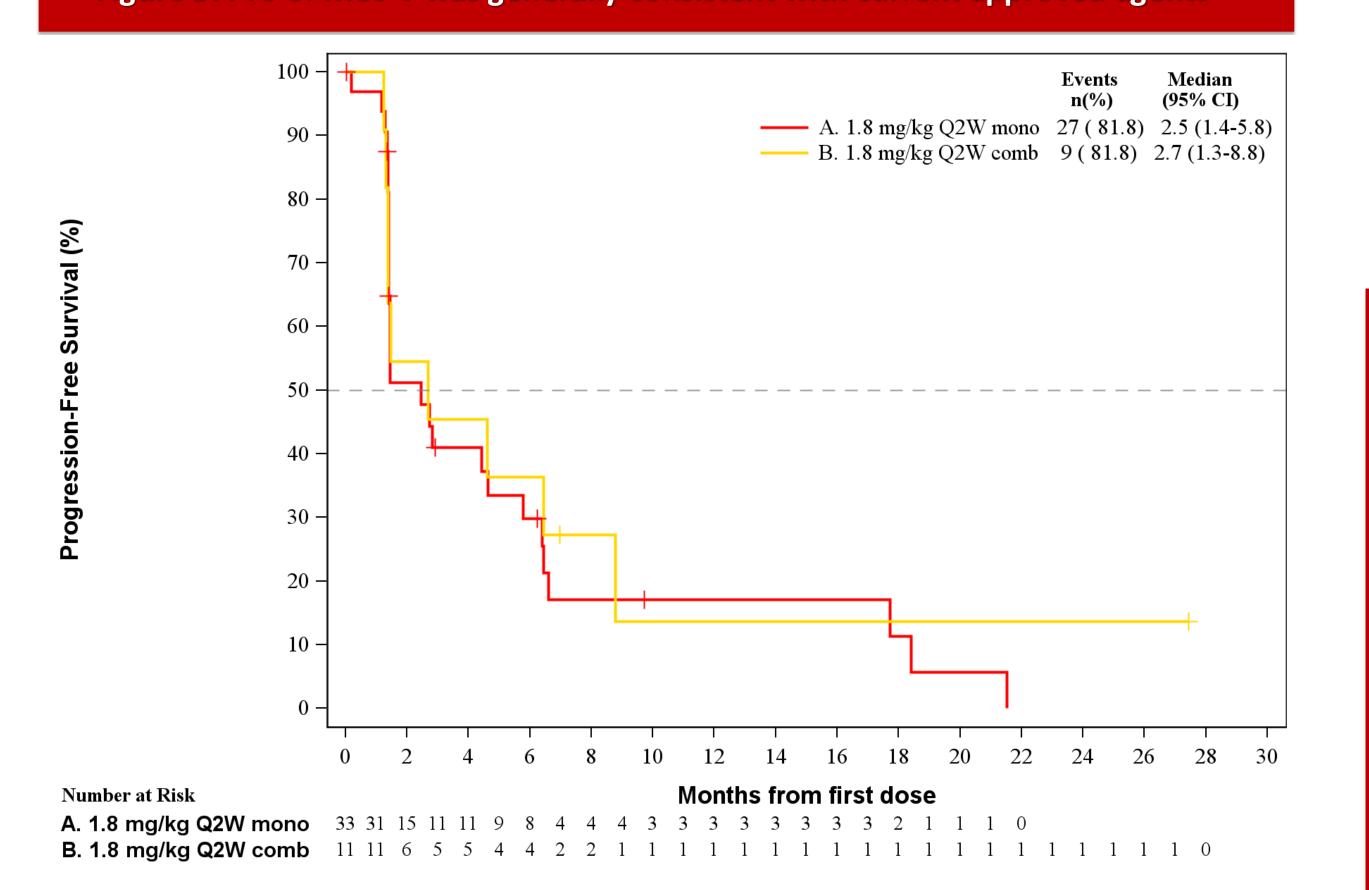
ADC = antibody-drug conjugate, AE = Adverse Event, CAB = Conditionally Active Biologic, CT = computed tomography, D = day, DAR = drug-antibody ratio, DCR = disease control rate, ECOG = Eastern Cooperative Oncology Group, G = grade, LMS = leiomyosarcoma, MRI = magnetic resonance imaging, MTD = maximum tolerated dose, NE = not evaluable, **nivo** = nivolumab, **OS** = overall survival, **PFS** = progression-free survival, **PK** = pharmacokinetics, **PR** = partial response, **pt** = patient, **Q2W** = every 2 weeks, **RECIST** = Response Evaluation Criteria in Solid Tumors, **STS** = soft tissue sarcoma, **TEAE** = treatment-emergent adverse event; **TME** = tumor microenvironment, **UPS** = undifferentiated pleomorphic sarcoma, \mathbf{v} = version.

Acknowledgements and Funding Disclosures

This study was funded by BioAtla, Inc.

MD: Adaptimmune, Cogent Biosciences, Deciphera Pharmaceuticals

Efficacy


LMS, Liposarcoma, and UPS pts treated with Mec-V experienced meaningfully longer median OS when compared to approved agents

- Two pts achieved partial response: (Table 3)
- 1 pt with LMS who received Mec-V combination
- 1 pt with UPS who received Mec-V monotherapy
- Median PFS for Mec-V monotherapy and combination was 2.5 and 2.7 months, respectively compared with 1.5-4.6 months for approved agents (Figure 3)⁶⁻⁸
- 12-month OS was 73% compared with ~50% historic 12-month OS for approved agents in patients with recurrent STS (Figure 4)^{6,9,10}
- Median OS in Mec-V monotherapy vs. Mec-V + nivo combination therapy was 18.4 vs 22.9 months, respectively, across STS subtypes with 45% of events recorded (Table 3, Figure 5)
- Median OS (95% CI):
- LMS: 19.0 (7.9, 29.9)
- Liposarcoma: 21.7 (3.7, NE)
- UPS: 21.5 (5.0, NE)

Table 3: Summary of antitumor activity amongst patients treated with Mec-V 1.8 mg/kg Q2W monotherapy and in combination with anti-PD-1 antibody

	Mec-V Q2W (n=33)*	Mec-V + nivo Q2W (n=11)	Total (N=44)
DCR (n, %)	17 (52)	6 (55)	23 (52)
PR (n, %)	1 (3)	1 (9)^	2 (5)
SD (n, %)	16 (49)	5 (46)	21 (48)
PD (n, %)	15 (46)	5 (46)	20 (46)
ORR (n, %)	1 (3)	1 (9)	2 (5)
Median PFS (months, 95% CI)	2.5 (1.4, 5.8)	2.7 (1.3, 8.8)	2.5 (1.4, 4.6)
Median OS (months, 95% CI)	18.4 (7.2, NE)	22.9 (14.2, NE)	21.5 (14.2, 29.9)
*one patient was not evaluable			

References

Presented at the Society for Immunotherapy of Cancer (SITC) annual meeting 2025 • National Harbor, MD, USA • November 5-9, 2025

1. Frey G., et al. mAbs. 2024;16(1):2322562. doi: 10.1080/19420862.2024.2322562. 2. Went P., et al. Hum Pathol. 2004;35(1):122-8. 3. Kebenko M., et al., Oncolmmunology. 2018;7(8):e1450710. doi: 10.1080/2162402X.2018.1450710. 4. Chang HW., et al. Proc Natl Acad Sci USA. 2021;118(9):e2020606118. doi:10.1073/pnas.2020606118. 5. Lee DW, et al. Biol Blood Marrow Transplant. 2019;25(4):625-638. doi:10.1016/j.bbmt.2018.12.758. 6. van der Graaf WT, et al. Lancet. 2012;379(9829):1879-1886. doi:10.1016/S0140-6736(12)60651-5. 7. Van Tine BA, et al. Rare Tumors. 2021 Oct 8;13:20363613211052498. doi: 10.1177/20363613211052498. PMID: 34646430; PMCID: PMC8504645. 8. Phillips E, et al. Front Pharmacol. 2022 Mar 30;13:869754. doi: 10.3389/fphar.2022.869754. PMID: 35444542; PMCID: PMC9014307. 9. Le Cesne A, et al. Ann Oncol. 2021;32(8):1034-1044. doi:10.1016/j.annonc.2021.04.014. 10. Schöffski P, et al. Lancet. 2016;387(10028):1629-1637. doi:10.1016/S0140-6736(15)01283-0.

Clinical Trial Identifier

CAB-AXL-ADC Safety and Efficacy Study in Adult and Adolescent Patients With Sarcoma **Clinical Trial Registry Number: NCT03425279**

Figure 4. Overall Survival analysis of Mec-V Q2W monotherapy versus Mec-V Q2W in combination with anti-PD-1 antibody (N=44)

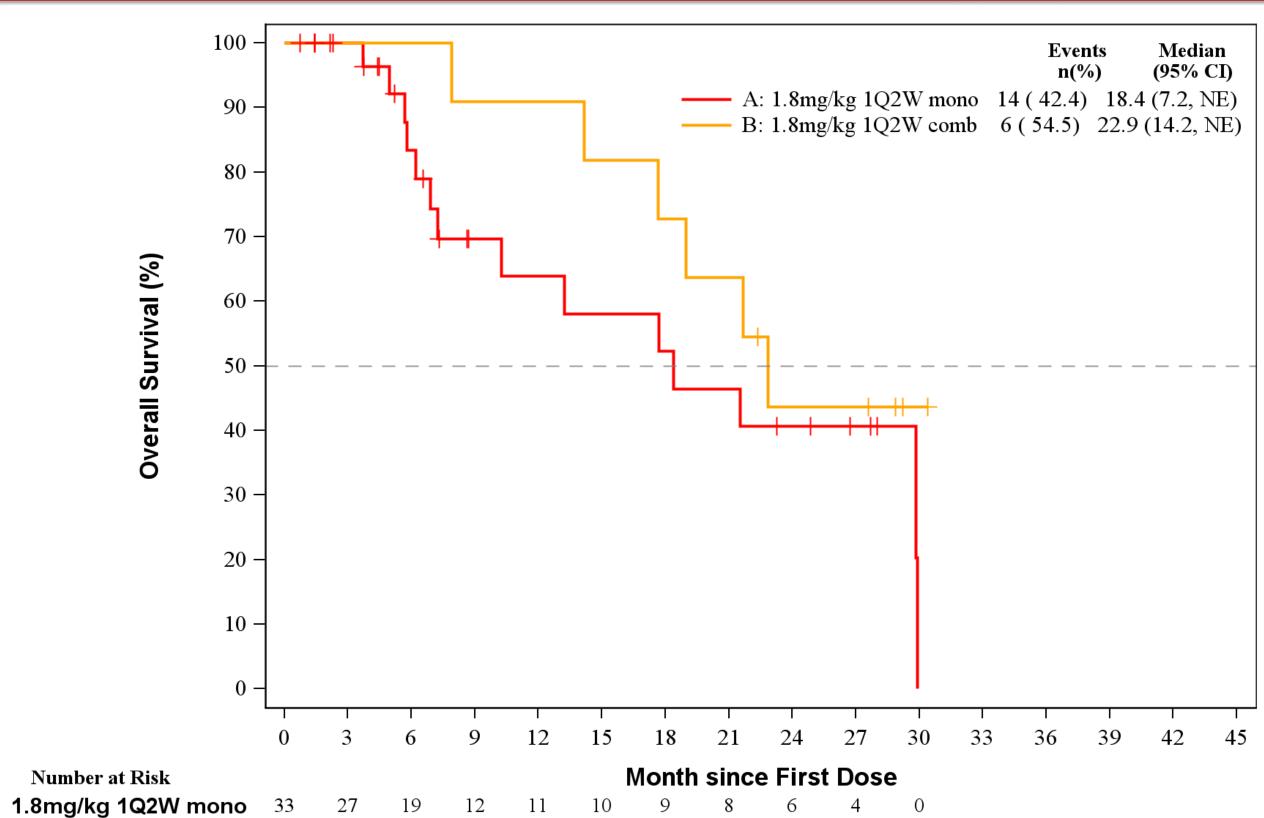
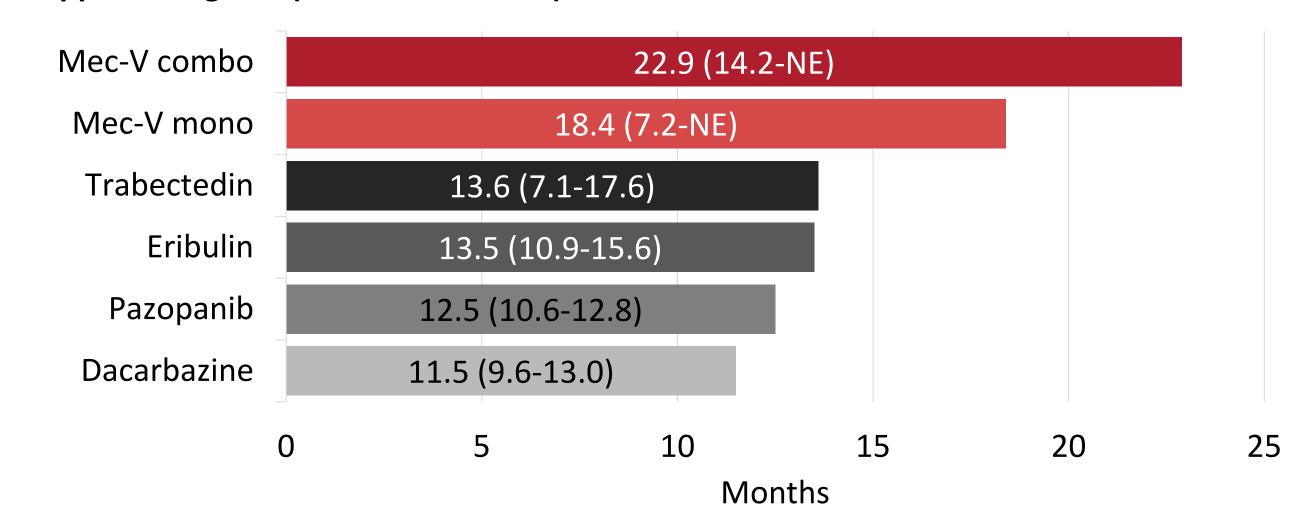
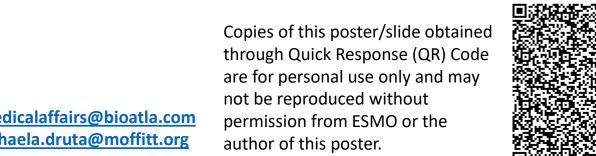




Figure 5. Mec-V mono and combo associated with longer median OS compared to approved agents (11.5-13.6 months)^{6,9}

Conclusions

- Among pts with treatment-refractory leiomyosarcoma, liposarcoma, and undifferentiated pleomorphic sarcoma, treatment with Mec-V, a conditionally binding, AXL-targeting ADC achieved a median overall survival of 21.5 months compared with ~12 months with approved agents
- The observed safety profile of Mec-V as monotherapy, and in combination with anti-PD-1 antibody, was manageable and consistent with conditional binding of the AXL target restricted to the tumor microenvironment
- In the context of reported historical OS data from approved treatments, overall survival findings with Mec-V are provocative

1.8mg/kg 1Q2W comb 11 11