Exploratory Analysis of Overall Survival among Non-Small Cell Lung Cancer (NSCLC) Patients with Mutated KRAS in a Phase 2 Trial of Mecbotamab Vedotin (CAB-AXL-ADC)

Grace K. Dy,¹ Edwin Yau,¹ Julia Rotow,² Elaine Shum,³ Dariusz M. Kowalski,⁴ Mariam Alexander,⁵ Richy Agajanian,⁶ Jonzugazagoitia Fraile,⁷ Carl M. Gay,⁸ Yu Chung Li,⁹ Liza Villaruz,¹⁰ Roland Leung,¹¹ Yuh-Min Chen,¹² Jorge Nieva,¹³ Charles Kuzma¹⁴ Karen L. Reckamp,¹⁵ Jose Fuentes Pradera,¹⁶ Kyechin Chen,¹⁷ Kartik Aysola,¹⁷ D. Ross Camidge¹⁸

¹Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA; ²Dana-Farber Cancer Institute of Research Institute of Research; ⁷Hospital Universitario 12 De Octubre, Madrid, Spain; ⁸MD Anderson, Houston, TX, USA; ⁹Hong Kon2, ¹Rospital Universitario 12, ⁹Hong Kon2, ⁹H United Oncology Center, Hong Kong; ¹⁰UPMC Cancer Center, Pittsburgh, PA USA; ¹⁴ First Health Outpatient Cancer Center, Pittsburgh, PA USA; ¹⁴ First Health Outpatient Cancer Center, Los Angeles, CA, USA; ¹⁴ First Health Outpatient Cancer Center, Pinehurst NC, ¹⁴ First Heal University of Colorado Cancer Center, Aurora, CO.


Background

- Activating mutations in KRAS are associated with a more aggressive clinical phenotype and is a poor prognostic factor for DFS and OS in NSCLC.¹⁻⁴
- High unmet need remains for pts with treatment-refractory KRAS-mutated NSCLC; ORR and mOS previously reported as 9.2%-13.2% and 11.3 months, respectively, when treated with docetaxel.^{5,6}
- 30% of pts NSCLC tumors harbor activating gene mutations of KRAS.
- No agents have received full marketing authorization for mKRAS NSCLC.

AXL overexpression drives adaptive resistance to KRAS inhibitors and immune checkpoint inhibitors.^{7,8}

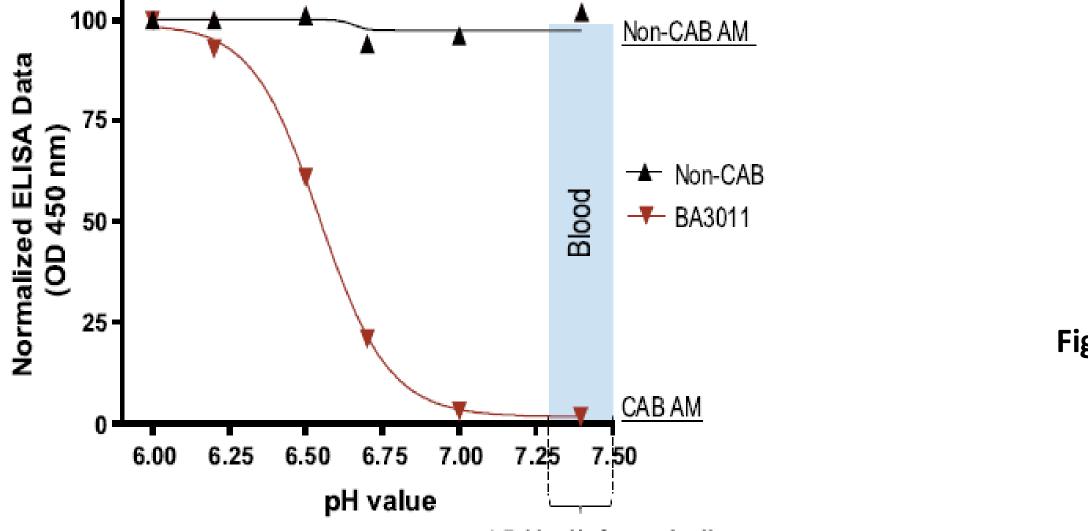
- AXL, a cell-surface transmembrane RTK signaling mediates adaptive resistance to mKRAS tumors due to upregulation of the AXL ligand GAS6 (Figure 1).⁷
- Part of the TAM receptor tyrosine kinase family (including TYRO3 and MER RTK), AXL has been associated with poor prognosis in cancer patients.⁸
- AXL expression is common in treatment-resistant tumors.^{9,10}
- O Drives cell growth, stemness, survival, migration and EMT transition. Its presence on cancer cells is a poor prognostic indicator.
- > AXL overexpression enables adaptive resistance to KRAS inhibitors and immune checkpoint inhibitors (ICI).^{7,8}
- KRAS activation leads to changes in gene expression, including induction of AXL expression.¹¹
- mKRAS and AXL co-expression is functionally linked, driving treatment resistance.
- 70-85% of mKRAS NSCLC expresses AXL by IHC, greater based on mRNA expression.
- AXL expression is frequently observed in treatment resistant tumors⁴⁻⁸ and mKRAS is an oncogenic driver stimulating AXL signaling and control of EMT.^{7,9,10,12,13}

Figure 1. Mutated KRAS leads to upregulation and activation of AXL expression.

Morimoto et al. Cancer Letters 587 (April 2024)

The AXL targeted ADC, mecbotamab vedotin (Mec-V) drives immunogenic cell death via its auristatin payload (MMAE).

Mecbotamab vedotin (Mec-V; BA3011) is a Conditionally Active Biologic (CAB) anti-AXL ADC (CAB-AXL-ADC)


CABs are:

- Engineered to conditionally and reversibly bind to AXL under the low-pH conditions (pH 5.3– 6.7) on the surface of cancer cells, thus sparing normal tissues. (Figure 2)
- Not masked or caged like prodrugs and therefore does not require enzymatic cleavage for activation.
- Designed to reduce off-tumor AEs without increasing immunogenicity, avoid tissue-mediated drug disposition, and improve PK.

	Result
• Mec-V:	Table 1. C

- Has a drug-to-antibody ratio (DAR) of 4 with a protease cleavable linker-payload (vcMMAE) for release in the cytoplasm of the cancer cell.
- CAB selectively enables targeting of AXL-expressing tumor cells to induce ICD.¹⁶
- The MMAE payload used by Mec-V contributes to immune control, thereby combining direct cytotoxicity with immune modulation, which likely converts NSCLC to a more indolent disease, supporting the observed improved OS.^{8,17}
- Mec-V can eliminate AXL expressing cancer initiating cells that drive treatment resistance and subsequent treatment failure.¹⁴
- Resulting cell death drives immunologic response that may further contributes to improved OS.¹⁵

Figure 2. Mec-V binds to target antigen under TME conditions.

≥7.4 is pH of normal cell

Binding of Mec-V to human AXL at different pH conditions was determined by ELISA. CABs preferentially bind at tumor pHs (5.3-6.7) and do not bind at the alkaline pH of healthy cells (≥7.4).

Methods

Study Design

- This multicenter, Phase 2, open-label trial evaluated the efficacy and safety of BA3011 in advanced, treatment-refractory NSCLC.
- Eligible patients included confirmed locally advanced or metastatic NSCLC, age ≥18 years, ECOG performance status of 0 or 1, treatment failure of a PD-1/L1 inhibitor or approved therapy for EGFR or ALK genomic tumor aberrations, AXL+ tumor staining (TmPS \geq 1%).
- Pts received either Mec-V 1.8 mg/kg monotherapy Q2W or Q2W +/- nivolumab.

Results

All results are from a data cut of January 18, 2025, unless otherwise specified.

Screened population

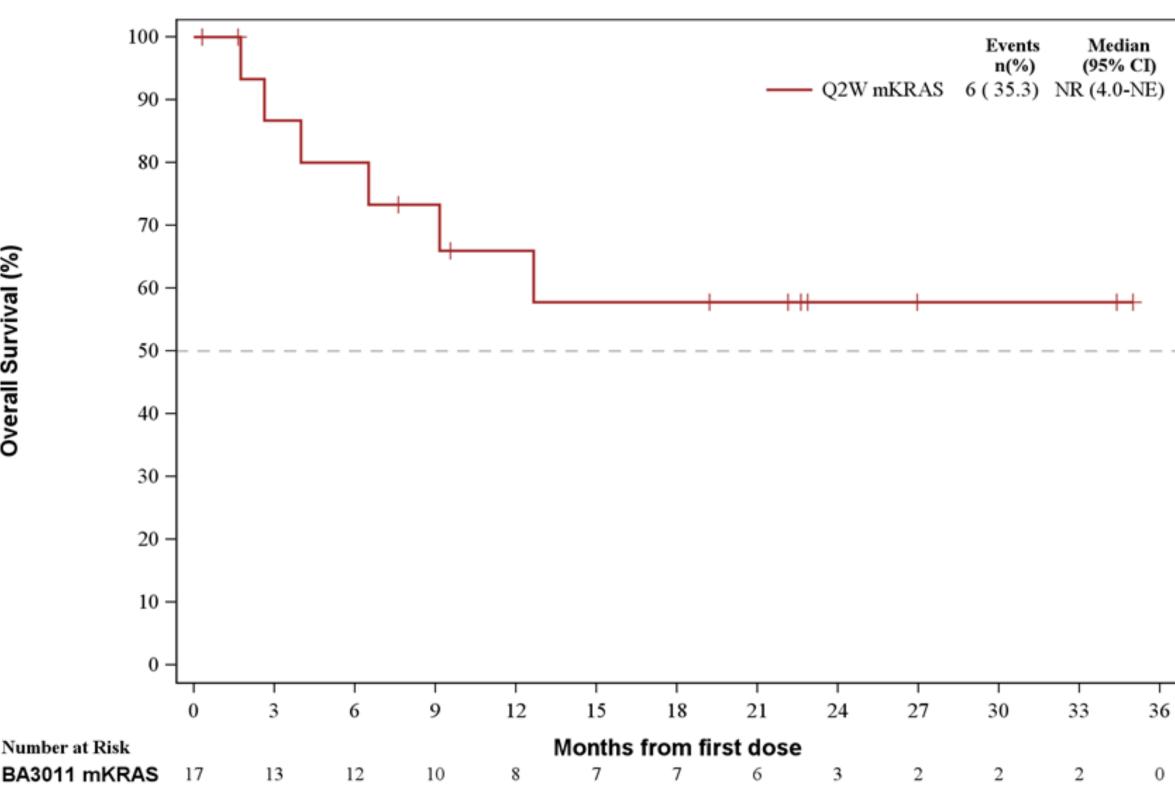
- 113 screening samples were evaluated for KRAS mutation status and AXL expression by IHC assay.
- Multiple variants of the KRAS mutation were detected in 27 screening samples.
- AXL was expressed by NSCLC tumors among 19 of 27 pts with mKRAS NSCLC (70% AXL-positive, TMPS \geq 1%).
- 9 of 11 (82%) samples with the G12C KRAS mutation were AXL-positive (TMPS \geq 1%).

Patient disposition

78 pts with refractory stage IV NSCLC were enrolled and received either Mec-V monotherapy or Mec-V + nivolumab.

- 45 of 78 pts (58%) received Mec-V Q2W. (Table 1)
- 17 of 45 pts (31%) had KRAS-mutated tumors
- Most pts (60%) had PD-L(1) positive tumor expression.
- Median of 19.3 months follow-up.

Prior therapies among mKRAS NSCLC pts receiving Mec-V Q2W (n=17)


- Heavily pre-treated population pts received a median of 3 prior lines of therapy.
- All pts received prior anti-PD-1; 15 pts received prior platinum therapy.

- Overall survival (Figure 3):

sults continued

	Q2W (n=26)	Q2W + nivo (n=19)	Total (N=45)
Age, mean (range), y	67 (53–80)	68 (50–81)	67 (46–82)
Sex, n (%)			
Male	13 (50)	8 (42)	21 (47)
Female	13 (50)	11 (58)	24 (53)
ECOG performance, n (%)			
0	8 (31)	3 (16)	11 (24)
1	18 (69)	16 (84)	34 (75)
KRAS mutation status, n (%)			
wtKRAS	15 (58)	12 (63)	27 (60)
mKRAS	10 (38)	7 (37)	17 (38)
Unknown	1 (4)	0	1 (2)
# of Prior Systemic Therapy (%)			
1	4 (15)	2 (11)	6 (13)
2	7 (27)	5 (26)	12 (27)
3+	15 (58)	12 (12)	27 (60)
Prior Anti-PD-(L)1 Therapy	23 (89)	18 (95)	41 (91)

Figure 3. Overall survival of 17 pts with mKRAS NSCLC who received Mec-V Q2W.

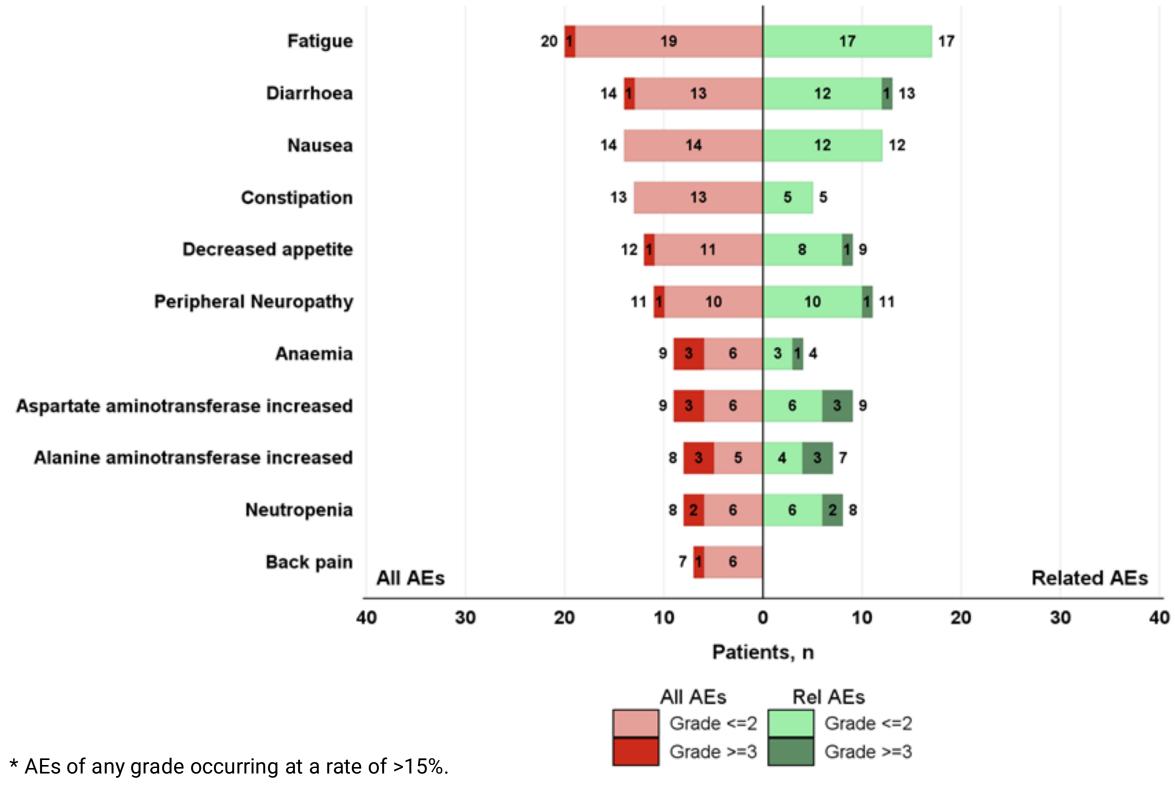
Efficacy among 16* pts with mKRAS NSCLC who received Mec-V Q2W

- Disease control rate = 81% (13/16)
- Objective response rate = 25% (4/16)
- 1-year: 66% (95% CI: 37-84)
- 2-year: 58% (95% CI: 29-79)
- Median OS not reached (95% CI: 4.0-not estimable [NE])
- * One treated pt withdrew consent for follow-up evaluation

Abbreviations

2Q3W, twice every 3 weeks; ADC, antibody-drug conjugate; AE, adverse event; ALK, anaplastic lymphoma kinase; BA3011, mecbotamab vedotin; BTD, Breakthrough Therapy designation; CI, confidence interval; DFS, disease-free survival; ECOG, Eastern Cooperative Oncology Group; EGFR, epidermal growth factor receptor; EMT, epithelial-to-mesenchymal transition; KRAS, Kirsten rat sarcoma oncogene homologue; mKRAS, mutated Kirsten rat sarcoma oncogene homologue; MMAE, monomethyl auristatin E; NE, not estimable; NSCLC, non-small cell lung cancer; OS, overall survival; PD-1, programmed cell death protein 1; PD-1/L1, programmed cell death protein 1/ligand 1; Q2W, once every 2 weeks; RECIST, Response Evaluation Criteria in Solid Tumors; RTK, receptor tyrosine kinase; SD, standard deviation; TMPS, tumor membrane percent score.

Acknowledgements and Funding


This study was funded by BioAtla, Inc.

Clinical Trial Identifier

A Phase 2 Multi-center, Open-label Study Of BA3011 As Monotherapy And In Combination With PD-1 Inhibitor in Patients With NSCLC Who Had Prior Disease Progression On PD-1. Clinical Trial Registry Number: NCT0468131.

- All grade: fatigue (44%), diarrhea (31%), nausea (31%), constipation (29%), decreased appetite (27%), peripheral neuropathy (24%).

- Related G3/4 AEs occurred in 12 of 45 pts (27%).

References

Disclosures KLR: Consulting or advisory role with: AstraZeneca, Genentech, Daiichi Sankyo/Lilly, Janssen Oncology, GlaxoSmithKline, Novocare, Merus, Pfizer, and Novartis; Research funding from: Genentech/Roche, Janssen Oncology, Elevation Oncology, Daiichi Sankyo/Astra Zeneca, and Blueprint Medicines.

Poster #98P

Safety among 45 treated pts who received Mec-V Q2W (Figure 5)

- G3/4: AST elevation (7%), ALT elevation (7%), anemia (7%).
- Most related AEs were low grade.
- No related G5 AEs were observed.
- Four (9%) pts discontinued treatment due to related AEs.

Figure 5. Most frequent* AEs among 45 pts who received Mec-V Q2W.

Conclusions

- Mec-V, an CAB-AXL-targeting ADC, achieved landmark overall survival of 66% and 58%, at one- and two-years, respectively, among patients with treatment-refractory **mKRAS NSCLC.**
- Mec-V provided pan-mKRAS antitumor activity with a manageable safety profile.
- **Prolonged patient survival was observed after Mec-V** treatment, regardless of the heterogeneous subsequent therapies that patients received, potentially differentiating **Mec-V from other mKRAS NSCLC therapies.**

1. Koopman LA, et al. JCI Insight. 2019 Nov 1;4(21):e128199., 2. Goulding R.E, et al. Cancer Treat Res Commun. 2020;24:100200., 3. Svaton M. Anticancer Res. 2016;36(3):1077-8., 4. Cascetta P, et al. Cancers (Basel). 2022 Nov 4;14(21):5430., 5. Johnson ML, et al. Lancet. 2023; 401(10378):733-746., 6. Mok TSK, et al. J Clin Oncol. 2024;42(17_suppl):LBA8509., 7. Morimoto K, et al. Cancer Lett. 2024; 587:216692., 8. Engelsen AST, et al. Front Immunol. 2022;13:869676, 9. Zhang G, et al. Oncol Lett. 2018;15(3):2726-2734., 10. de Miguel-Pérez D, et al. Cancers (Basel). 2019;11(11):1750., **11.** Ash, L. et al. *KRAS: Curr. Oncol.* 2024, 31, 2024–2046., **12.** Bironzo P., et al. *Cancer.* 2023;129(11):1662-71., **13.** Liu Y, et al. *Mol* Cancer. 2025;24(1):11., 14. Yadav M, et al. Signal Transduct Target Ther. 2025;10:37., 15. Heiser RA, et al. Mol Cancer Ther. 2024 Jan 3;23(1):68-83., 16. Chang HW, et al. Proc Natl Acad Sci. 2021; 118(9): e2020606118., 17. Xie Y. Cell Death Dis. 2024;15(2):110.

